Connect with us

NewsMakers

Allergy season starts earlier each year due to climate change and pollen transport

Allergy sufferers are no strangers to problems with pollen. But now – due to climate change – the pollen season is lasting longer and starting earlier than ever before, meaning more days of itchy eyes and runny noses. Warmer temperatures cause flowers to bloom earlier, while higher CO2 levels cause more pollen to be produced.

Published

on

Photo by Coley Christine from Unsplash.com

Allergy sufferers are no strangers to problems with pollen. But now – due to climate change – the pollen season is lasting longer and starting earlier than ever before, meaning more days of itchy eyes and runny noses. Warmer temperatures cause flowers to bloom earlier, while higher CO2 levels cause more pollen to be produced.

The effects of climate change on the pollen season have been studied at-length, and according to some scientists, has grown by as much as 20 days in the past 30 years, at least in the US and Canada. But one important element is often overlooked – “Pollen is meant to fly,” says Dr Annette Menzel, Professor of ecoclimatology at the Technical University of Munich. “Transport phenomena have to be taken into account.”

Along with her colleagues, she studied the transport of pollen in Bavaria, Germany, in order to better understand how the pollen season has changed over time. “The transport of pollen has important implications for the length, timing, and severity of the allergenic pollen season,” says Dr Ye Yuan, a coauthor on the study.

Menzel and her team focused on Bavaria – a state in southeast Germany – and used six pollen monitoring stations scattered around the region to analyze data. Their results were recently published in Frontiers in Allergy. They found that certain species of pollen, such as from hazel shrubs and alder trees, advanced the start of their seasons by up to 2 days per year, over a period of 30 years (between 1987 and 2017). Other species, which tend to bloom later in the year, such as birch and ash trees, moved their seasons 0.5 days earlier on average each year, across that same time period.

Pollen can travel hundreds of kilometers and, with changing weather patterns and altered species distributions, it’s possible that people are becoming exposed to “new” pollen species – meaning pollen that our bodies are unaccustomed to encountering each year.

While it can sometimes be difficult to differentiate between local and transported pollen, the researchers focused on pre-season transports. So, for example, if pollen from birch trees was present at the monitoring station, but local birch trees would not flower for at least another 10 days, that pollen was considered to be transported from far away.

“We were surprised that pre-season pollen transport is a quite common phenomenon being observed in two-thirds of the cases,” says Menzel. As for why it’s important to understand how much pollen is from far away, Yuan says that: “Especially for light-weight allergenic [pollen], long distance transport could seriously influence local human health.”

By examining another element besides simple pollen concentration, scientists can delve deeper into how exactly the pollen season is being affected by climate change. For example, Menzel says that the pollen season may be even longer than estimated based on flowering observations by “taking into account pollen transport, as it has been done in our current study.”

While the Munich study did not track how far pollen was transported, and only differentiated between local and long-range transport (meaning pollen coming from outside Bavaria), it provides a crucial key in our understanding of annual pollen patterns. Yuan says that future studies should account for “climate change scenarios [and] land use/land cover changes.” He also adds that citizen scientists may be able to contribute to pollen studies, who can help collect local observations and contribute to data collection.

It doesn’t look like the pollen season will shorten any time soon, but more research on the subject can provide a better understanding of global patterns and changes so that we can better address these issues in the future.

Zest Magazine accepts contributions promoting everything about living the good life (and how to make this so). C'mon, give us a yell.

NewsMakers

Patients who are overweight or obese at risk of more severe COVID-19

COVID-19 patients with obesity were more likely to require oxygen and had a 73 per cent greater chance of needing invasive mechanical ventilation. Similar but more modest results were seen in overweight patients. No link was found between being overweight or obese and dying in hospital from COVID-19.

Published

on

Patients who are overweight or obese have more severe COVID-19 and are highly likely to require invasive respiratory support, according to a new international study.

The research, led by the Murdoch Children’s Research Institute (MCRI) and The University of Queensland and published in Diabetes Care, found obese or overweight patients are at high risk for having worse COVID-19 outcomes. They are also more likely to require oxygen and invasive mechanical ventilation compared to those with a healthy weight.

MCRI researcher Dr Danielle Longmore said the findings, which highlighted the relationship between obesity and increased COVID-19 disease burden, showed the need to urgently introduce strategies to address the complex socio-economic drivers of obesity, and public policy measures such as restrictions on junk food advertising.

“Although taking steps to address obesity in the short-term is unlikely to have an immediate impact in the COVID-19 pandemic, it will likely reduce the disease burden in future viral pandemics and reduce risks of complications like heart disease and stroke,” she said.

The study looked at hospitalised SARS-CoV-2 patients from 18 hospitals in 11 countries including China, America, Italy, South Africa and The Netherlands.

Among the 7244 patients aged 18 years and over, 34.8 per cent were overweight and 30.8 per cent were obese.

COVID-19 patients with obesity were more likely to require oxygen and had a 73 per cent greater chance of needing invasive mechanical ventilation. Similar but more modest results were seen in overweight patients. No link was found between being overweight or obese and dying in hospital from COVID-19.

Cardiovascular and pre-existing respiratory diseases were associated with increased odds of in-hospital deaths but not a greater risk for needing oxygen and mechanical ventilation. For patients with pre-existing diabetes, there was increased odds of needing invasive respiratory support, but no additionally increase in risk in those with obesity and diabetes.

Men were at an increased risk of severe COVID-19 outcomes and needing invasive mechanical ventilation. In those aged over 65 years, there was an increased chance of requiring oxygen and higher rates of in-hospital deaths.

The University of Queensland’s Dr Kirsty Short, who co-led the research, said almost 40 per cent of the global population was overweight or obese.

“Obesity is associated with numerous poor health outcomes, including increased risk of cardiometabolic and respiratory disease and more severe viral disease including influenza, dengue and SARS-CoV-1,” she said.

Dr Short said while previous reports indicated that obesity was an important risk factor in the severity of COVID-19, almost all this data had been collected from single sites and many regions were not represented. Moreover, there was a limited amount of evidence available about the effects of being overweight or obese on COVID-19 severity.

“Given the large scale of this study we have conclusively shown that being overweight or obese are independent risk factors for worse outcomes in adults hospitalised with COVID-19,” she said.

MCRI Professor David Burgner, who co-led the research, said the data would help inform immunisation prioritisation for higher-risk groups.

“At the moment, the World Health Organization has not had enough high-quality data to include being overweight or obese as a risk factor for severe COVID-19 disease. Our study should help inform decisions about which higher-risk groups should be vaccinated as a priority,” he said.

Continue Reading

NewsMakers

Omega-3 supplements do double duty in protecting against stress

A high daily dose of an omega-3 supplement may help slow the effects of aging by suppressing damage and boosting protection at the cellular level during and after a stressful event, new research suggests.

Published

on

Photo by Michele Blackwell from Unsplash.com

A high daily dose of an omega-3 supplement may help slow the effects of aging by suppressing damage and boosting protection at the cellular level during and after a stressful event, new research suggests.

Researchers at The Ohio State University found that daily supplements that contained 2.5 grams of omega-3 polyunsaturated fatty acids, the highest dose tested, were the best at helping the body resist the damaging effects of stress.

Compared to the placebo group, participants taking omega-3 supplements produced less of the stress hormone cortisol and lower levels of a pro-inflammatory protein during a stressful event in the lab. And while levels of protective compounds sharply declined in the placebo group after the stressor, there were no such decreases detected in people taking omega-3s.

The supplements contributed to what the researchers call stress resilience: reduction of harm during stress and, after acute stress, sustained anti-inflammatory activity and protection of cell components that shrink as a consequence of aging.

The potential anti-aging effects were considered particularly striking because they occurred in people who were healthy but also sedentary, overweight and middle-aged – all characteristics that could lead to a higher risk for accelerated aging.

“The findings suggest that omega-3 supplementation is one relatively simple change people could make that could have a positive effect at breaking the chain between stress and negative health effects,” said Annelise Madison, lead author of the paper and a graduate student in clinical psychology at Ohio State.

The research is published today (Monday, April 19, 2021) in the journal Molecular Psychiatry.

Madison works in the lab of Janice Kiecolt-Glaser, professor of psychiatry and psychology and director of the Institute for Behavioral Medicine Research at Ohio State. This paper is a secondary analysis of one of Kiecolt-Glaser’s earlier studies showing that omega-3 supplements altered a ratio of fatty acid consumption in a way that helped preserve tiny segments of DNA in white blood cells.

Those short fragments of DNA are called telomeres, which function as protective caps at the end of chromosomes. Telomeres’ tendency to shorten in many types of cells is associated with age-related diseases, especially heart disease, and early mortality.

In the initial study, researchers were monitoring changes to telomere length in white blood cells known as lymphocytes. For this new study, the researchers looked at how sudden stress affected a group of biological markers that included telomerase, an enzyme that rebuilds telomeres, because levels of the enzyme would react more quickly to stress than the length of telomeres themselves.

Specifically, they compared how moderate and high doses of omega-3s and a placebo influenced those markers during and after an experimental stressor. Study participants took either 2.5 grams or 1.25 grams of omega-3s each day, or a placebo containing a mix of oils representing a typical American’s daily intake.

After four months on the supplements, the 138 research participants, age 40-85, took a 20-minute test combining a speech and a math subtraction task that is known to reliably produce an inflammatory stress response.

Only the highest dose of omega-3s helped suppress damage during the stressful event when compared to the placebo group, lowering cortisol and a pro-inflammatory protein by an average of 19% and 33%, respectively.

Results from blood samples showed that both doses of omega-3s prevented any changes in telomerase levels or a protein that reduces inflammation in the two hours after participants experienced the acute stress, meaning any needed stress-related cell repair – including telomere restoration – could be performed as usual. In the placebo group, those repair mechanisms lost ground: Telomerase dropped by an average of 24% and the anti-inflammatory protein decreased by an average of at least 20%.

“You could consider an increase in cortisol and inflammation potential factors that would erode telomere length,” Madison said. “The assumption based on past work is that telomerase can help rebuild telomere length, and you want to have enough telomerase present to compensate for any stress-related damage.

“The fact that our results were dose-dependent, and we’re seeing more impact with the higher omega-3 dose, would suggest that this supports a causal relationship.”

The researchers also suggested that by lowering stress-related inflammation, omega-3s may help disrupt the connection between repeated stress and depressive symptoms. Previous research has suggested that people with a higher inflammatory reaction to a stressor in the lab may develop more depressive symptoms over time.

“Not everyone who is depressed has heightened inflammation – about a third do. This helps explain why omega-3 supplementation doesn’t always result in reduced depressive symptoms,” Kiecolt-Glaser said. “If you don’t have heightened inflammation, then omega-3s may not be particularly helpful. But for people with depression who do, our results suggest omega-3s would be more useful.”

The 2.5-gram dose of omega-3s is much higher than what most Americans consume on a daily basis, but study participants showed no signs of having problems with the supplements, Madison said.

Continue Reading

NewsMakers

Heart patients advised to move more to avoid heart attacks and strokes

To prevent heart disease, European guidelines recommend at least 150 minutes a week of moderate intensity or 75 minutes a week of vigorous intensity aerobic physical activity or an equivalent combination.

Published

on

Photo by @chanderr from Unsplash.com

Elevated blood pressure, high cholesterol and diabetes increase the risk of heart disease. But a large study today reveals that in people with these conditions, increasing activity levels is associated with a reduced likelihood of heart events and mortality. The research is presented at ESC Preventive Cardiology 2021, an online scientific congress of the European Society of Cardiology (ESC).

Study author Dr. Esmée Bakker of Radboud University Medical Center, Nijmegen, the Netherlands said: “Previous research showed that improvements in physical activity are beneficial to health. However, those studies were performed in the general population. In our study, we were interested to see if there were similar effects in individuals with cardiovascular risk factors such as high blood pressure, high cholesterol, and diabetes.”

The study included 88,320 individuals from the LifeLines Cohort Study. Participants underwent a physical examination and completed questionnaires about their medical history and lifestyle including exercise. The questionnaires were repeated after approximately four years.

Study participants were divided into five groups according to activity levels at baseline and four years: large reduction, moderate reduction, no change, moderate improvement, and large improvement. Participants were followed-up for a median of seven years after the first assessment for the occurrence of cardiovascular disease or death.

A total of 18,502 (21%) individuals had high blood pressure, high cholesterol, and/or diabetes at the start of the study. The average age of this group was 55 years. After adjusting for age, sex, and baseline physical activity, the researchers found that those with a moderate to large improvement in physical activity were around 30% less likely to develop cardiovascular disease or die during follow-up compared to those who did not change their activity level.

The remaining 69,808 (79%) participants did not have high blood pressure, high cholesterol, or diabetes at the start of the study. The average age of this group was 43 years. After adjusting for age, sex, and baseline physical activity, the researchers found that those with large reductions in physical activity had a 40% higher risk of cardiovascular disease or death compared to those who did not change their activity level.

Dr. Bakker said: “Our study suggests that to prevent heart attacks and strokes and boost longevity, healthy individuals should maintain their physical activity levels, while those with risk factors need to become more active. The associations we found were even more pronounced in people who were relatively sedentary at the start of the study, indicating that inactive people have the most to gain.”

To prevent heart disease, European guidelines recommend at least 150 minutes a week of moderate intensity or 75 minutes a week of vigorous intensity aerobic physical activity or an equivalent combination.

Dr. Bakker said: “If you are currently sedentary, walking is a good activity to start with. If you are already hitting the recommended amount, try doing 10 minutes more each day or increasing the intensity.”

Continue Reading
Advertisement
Advertisement

Like Us On Facebook

Facebook Pagelike Widget

Most Popular

Copyright ©FRINGE PUBLISHING. All rights reserved.